Reinforcement Learning
Intelligent Systems Series
Lecture 4 (Part 1)

Georg Martius
Slides adapted from David Silver, Deepmind

MPI for Intelligent Systems, Tübingen, Germany

November 9, 2018
Markov Decision Processes
A Markov process is a memoryless random process, i.e. a sequence of random states S_1, S_2, \ldots with the Markov property.
A Markov process is a memoryless random process, i.e. a sequence of random states S_1, S_2, \ldots with the Markov property.

Reminder: Markov property

A state S_t is Markov if and only if

$$P(S_{t+1} \mid S_t) = P(S_{t+1} \mid S_1, \ldots, S_t)$$
A Markov process is a memoryless random process, i.e. a sequence of random states S_1, S_2, \ldots with the Markov property.

Reminder: Markov property

A state S_t is Markov if and only if

$$P(S_{t+1} \mid S_t) = P(S_{t+1} \mid S_1, \ldots, S_t)$$

Definition (Markov Process/ Markov Chain)

A *Markov Process* (or *Markov Chain*) is a tuple (S, \mathcal{P})

- S is a (finite) set of states
- \mathcal{P} is a state transition 0 probability matrix,

$$P_{ss'} = P(S_{t+1} = s' \mid S_t = s)$$
Example: Student Markov Chain
Example: Student Markov Chain Transition Matrix

\[
P = \begin{bmatrix}
C1 & C2 & C3 & Pass & Pub & FB & Sleep \\
C1 & 0.5 & & & & & 0.2 \\
C2 & & 0.8 & & & 0.4 & \\
C3 & & & 0.6 & 0.4 & & \\
Pass & & & & 1.0 & & \\
Pub & 0.2 & 0.4 & 0.4 & & & \\
FB & & 0.2 & 0.4 & & 0.9 & \\
Sleep & & & 0.4 & & 1 & \\
\end{bmatrix}
\]
A Markov reward process is a Markov chain with values.

Definition (MRP)

A *Markov Reward Process* is a tuple \((S, P, R, \gamma)\)

- \(S\) is a finite set of states
- \(P\) is a state transition probability matrix,
 \[P(S_{t+1} \mid S_t) = P(S_{t+1} \mid S_1, \ldots, S_t) \]
- \(R\) is a reward function,
 \[R_s = \mathbb{E}[R_{t+1} \mid S_t = s] \]
- \(\gamma\) is a discount factor, \(\gamma \in [0, 1]\)

Note that the reward can be stochastic (\(R_s\) is in expectation)
A Markov reward process is a Markov chain with values.

Definition (MRP)

A *Markov Reward Process* is a tuple \((S, P, R, \gamma)\)

- \(S\) is a finite set of states
- \(P\) is a state transition probability matrix,
 \[
P(S_{t+1} \mid S_t) = P(S_{t+1} \mid S_1, \ldots, S_t)
\]
- \(R\) is a reward function, \(R_s = \mathbb{E}[R_{t+1} \mid S_t = s]\)
- \(\gamma\) is a discount factor, \(\gamma \in [0, 1]\)

Note that the reward can be stochastic (\(R_s\) is in expectation)
Example: Student MRP

from David Silver
Definition

The *return* G_t is the total discounted reward from time-step t.

$$ G_t = R_{t+1} + \gamma R_{t+2} + \cdots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} $$

The discount $\gamma \in [0, 1]$ devalues future rewards: reward R after $k+1$ time-steps is counted as $\gamma^k R$.

Extreme cases:
- γ close to 0 leads to immediate reward maximization only
- γ close to 1 leads to far-sighted evaluation
The return G_t is the total discounted reward from time-step t.

$$G_t = R_{t+1} + \gamma R_{t+2} + \cdots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

- The discount $\gamma \in [0, 1]$ devaluates future rewards: reward R after $k + 1$ time-steps is counted as $\gamma^k R$.
- Extreme cases:
 - γ close to 0 leads to immediate reward maximization only
 - γ close to 1 leads to far-sighted evaluation
The value function describes the value of a state (in the stationary state)

Definition

The state *value function* \(v(s) \) of an MRP is the expected return starting from state \(s \)

\[
v(s) = \mathbb{E}[G_t | S_t = s]
\]
Example: Value Function for Student MRP

\[v(s) \text{ for } \gamma = 0 \]

from David Silver
Example: Value Function for Student MRP

\[v(s) \text{ for } \gamma = 0.9 \]
Example: Value Function for Student MRP

\(\nu(s) \) for \(\gamma = 1 \)

from David Silver
Bellman Equation (MRP) I

Idea: Make value computation recursive by tearing apart contributions from:
- immediate reward
- and from discounted future rewards

\[v(s) = \mathbb{E}[G_t | S_t = s] = \mathbb{E}[R_{t+1} + \gamma G_{t+1} | S_t = s] = \mathbb{E}[R_{t+1} + \gamma v(S_{t+1}) | S_t = s] \]

Mh... need Expectation over \(S_{t+1} \)
Use transition matrix to get probabilities of succeeding state:
\[v(s) = \mathbb{E}[R_{s} + \gamma \sum_{s' \in S} P_{ss'} v(s') | S_t = s] \]
Bellman Equation (MRP) I

Idea: Make value computation recursive by tearing apart contributions from:
- immediate reward
- and from discounted future rewards

\[v(s) = \mathbb{E}[G_t \mid S_t = s] \]
Bellman Equation (MRP) I

Idea: Make value computation recursive by tearing apart contributions from:

- immediate reward
- and from discounted future rewards

\[v(s) = \mathbb{E}[G_t \mid S_t = s] \]
\[= \mathbb{E}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots \mid S_t = s] \]
\[= \mathbb{E}[R_{t+1} + \gamma G_{t+1} \mid S_t = s] \]
Bellman Equation (MRP) I

Idea: Make value computation recursive by tearing apart contributions from:
 - immediate reward
 - and from discounted future rewards

\[
\nu(s) = \mathbb{E}[G_t \mid S_t = s] \\
= \mathbb{E}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots \mid S_t = s] \\
= \mathbb{E}[R_{t+1} + \gamma G_{t+1} \mid S_t = s] \\
= \mathbb{E}[R_{t+1} + \gamma \nu(S_{t+1}) \mid S_t = s]
\]
Bellman Equation (MRP) I

Idea: Make value computation recursive by tearing apart contributions from:
- immediate reward
- and from discounted future rewards

\[
\begin{align*}
\nu(s) &= \mathbb{E}[G_t \mid S_t = s] \\
&= \mathbb{E}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots \mid S_t = s] \\
&= \mathbb{E}[R_{t+1} + \gamma G_{t+1} \mid S_t = s] \\
&= \mathbb{E}[R_{t+1} + \gamma \nu(S_{t+1}) \mid S_t = s]
\end{align*}
\]

Mh... need Expectation over \(S_{t+1} \)
Bellman Equation (MRP) I

Idea: Make value computation recursive by tearing apart contributions from:
- immediate reward
- and from discounted future rewards

\[v(s) = \mathbb{E}[G_t \mid S_t = s] \]
\[
= \mathbb{E}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots \mid S_t = s]
\]
\[
= \mathbb{E}[R_{t+1} + \gamma G_{t+1} \mid S_t = s]
\]
\[
= \mathbb{E}[R_{t+1} + \gamma v(S_{t+1}) \mid S_t = s]
\]

Mh... need Expectation over \(S_{t+1} \)

Use transition matrix to get probabilities of succeeding state:

\[v(s) = R_s + \gamma \sum_{s' \in S} P_{ss'} v(s') \]
Example: Bellman Equation for Student MRP

\[4.3 = -2 + 0.6 \times 10 + 0.4 \times 0.8 \]

from David Silver
Bellman equations in matrix form:

\[v = \mathcal{R} + \gamma \mathcal{P} v \]

where \(v \in \mathbb{R}^{|S|} \) and \(\mathcal{R} \) are vectors
Bellman equations in matrix form:

$$v = \mathcal{R} + \gamma \mathcal{P} v$$

where $v \in \mathbb{R}^{|S|}$ and \mathcal{R} are vectors

The Bellman equation can be solved directly:

$$v = (I - \gamma \mathcal{P})^{-1} \mathcal{R}$$

computational complexity is $O(|S|^3)$
A Markov reward process has no agent, there is no influence on the system.
A Markov reward process has no agent, there is no influence on the system. And MRP with an active agent forms a Markov Decision Process.

- Agent takes decision by executing actions
- State is Markovian

Markov Decision Process

A Markov reward process has no agent, there is no influence on the system. And MRP with an active agent forms a Markov Decision Process.

- Agent takes decision by executing actions
- State is Markovian
A Markov reward process has no agent, there is no influence on the system. And MRP with an active agent forms a Markov Decision Process.

- Agent takes decision by executing actions
- State is Markovian

Definition (MDP)

A *Markov Decision Process* is a tuple \((S, A, P, R, \gamma)\)

- \(S\) is a finite set of states
- \(A\) is a finite set of actions
- \(P\) is a state transition probability matrix,
 \[P^a_{ss'} = P(S_{t+1} | S_t, A_t = a) \]
- \(R\) is a reward function, \(R^a_s = \mathbb{E}[R_{t+1} | S_t = s, A_t = a]\)
- \(\gamma\) is a discount factor, \(\gamma \in [0, 1]\)
Example: Student MDP

- **Facebook**
 - $R = -1$

- **Quit**
 - $R = 0$

- **Study**
 - $R = -2$

- **Sleep**
 - $R = 0$

- **Pub**
 - $R = +1$

- **Study**
 - $R = +10$

from David Silver
How to model decision taking?

The agent has an action function called policy.
How to model decision taking?

The agent has a action function called policy.

Definition

A *policy* π is a distribution over actions given states,

$$ \pi(a|s) = P(A_t = a \mid S_t = s) $$
How to model decision taking?

The agent has a action function called policy.

Definition

A *policy* π is a distribution over actions given states,

$$\pi(a|s) = P(A_t = a \mid S_t = s)$$

- Since it is a Markov process the policy only depends on the current state
- Implication: policies are stationary (independent of time)
How to model decision taking?

The agent has a action function called policy.

Definition

A *policy* \(\pi \) is a distribution over actions given states,

\[
\pi(a|s) = P(A_t = a \mid S_t = s)
\]

- Since it is a Markov process the policy only depends on the current state
- Implication: policies are stationary (independent of time)

An MDP with a given policy turns into a MRP:

\[
P^\pi_{ss'} = \sum_{a \in A} \pi(a|s)P^a_{ss'}
\]

\[
R^\pi_s = \sum_{a \in A} \pi(a|s)R^a_s
\]
Modelling expected returns in MDP

How good is each state when we follow the policy π?
Modelling expected returns in MDP

How good is each state when we follow the policy π?

Definition

The *state-value* function $v_\pi(s)$ of an MDP is the expected return when starting from state s and following policy π.

$$v_\pi(s) = \mathbb{E}[G_t | S_t = s]$$
Modelling expected returns in MDP

How good is each state when we follow the policy π?

Definition

The *state-value* function $v_\pi(s)$ of an MDP is the expected return when starting from state s and following policy π.

$$v_\pi(s) = \mathbb{E}[G_t | S_t = s]$$

Should we change the policy?
How much does choosing a different action change the value?
Modelling expected returns in MDP

How good is each state when we follow the policy π?

Definition

The *state-value* function $v_\pi(s)$ of an MDP is the expected return when starting from state s and following policy π.

$$v_\pi(s) = \mathbb{E}[G_t | S_t = s]$$

Should we change the policy?
How much does choosing a different action change the value?

Definition

The *action-value* function $q_\pi(s, a)$ of an MDP is the expected return when starting from state s, taking action a, and then following policy π.

$$q_\pi(s, a) = \mathbb{E}[G_t | S_t = s, A_t = a]$$
Example: State-Value function for Student MDP

$\nu_{\pi}(s)$ for $\pi(a|s)=0.5, \gamma=1$

from David Silver
Recall: Bellman Equation: decompose expected reward into immediate reward plus discounted value of successor state,

\[v_\pi(s) = \mathbb{E}_\pi[R_{t+1} + \gamma v_\pi(S_{t+1}) | S_t = s] \]
Recall: Bellman Equation: decompose expected reward into immediate reward plus discounted value of successor state,

$$v_\pi(s) = \mathbb{E}_\pi[R_{t+1} + \gamma v_\pi(S_{t+1}) | S_t = s]$$

The action-value function can be similarly decomposed,

$$q_\pi(s, a) = \mathbb{E}_\pi[R_{t+1} + \gamma q_\pi(S_{t+1}, A_{t+1}) | S_t = s, A_t = a]$$
Bellman Equation: joined update of v_{π} and q_{π}

Value function can be derived from q_{π}:

$$v_{\pi}(s) = \sum_{a \in A} \pi(a|s) q_{\pi}(s, a)$$

q_{π} can be computed from transition model

$$q_{\pi}(s, a) = R_{a} s + \gamma \sum_{s' \in S} P_{aa'} v_{\pi}(s')$$

Substituting q_{π} in v_{π}:

$$v_{\pi}(s) = \sum_{a \in A} \pi(a|s) \left(R_{a} s + \gamma \sum_{s' \in S} P_{aa'} v_{\pi}(s') \right)$$

Substituting v_{π} in q_{π}:

$$q_{\pi}(s, a) = R_{a} s + \gamma \sum_{s' \in S} P_{aa'} \sum_{a' \in A} \pi(a'|s') q_{\pi}(s', a')$$
Value function can be derived from q_π:

$$v_\pi(s) = \sum_{a \in A} \pi(a|s) q_\pi(s, a)$$
Value function can be derived from q_π:

$$v_\pi(s) = \sum_{a \in A} \pi(a|s) q_\pi(s, a)$$

... and q can be computed from transition model

$$q_\pi(s, a) = R^a_s + \gamma \sum_{s' \in S} P^a_{ss'} v_\pi(s')$$
Bellman Equation: joined update of v_π and q_π

Value function can be derived from q_π:

$$v_\pi(s) = \sum_{a \in A} \pi(a|s) q_\pi(s,a)$$

...and q can be computed from transition model

$$q_\pi(s, a) = R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a v_\pi(s')$$

Substituting q in v:

$$v_\pi(s) = \sum_{a \in A} \pi(a|s) \left(R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a v_\pi(s') \right)$$
Bellman Equation: joined update of v_π and q_π

Value function can be derived from q_π:

$$v_\pi(s) = \sum_{a \in A} \pi(a|s) q_\pi(s, a)$$

...and q can be computed from transition model

$$q_\pi(s, a) = R_s^a + \gamma \sum_{s' \in S} \mathcal{P}_{ss'}^a v_\pi(s')$$

Substituting q in v:

$$v_\pi(s) = \sum_{a \in A} \pi(a|s) \left(R_s^a + \gamma \sum_{s' \in S} \mathcal{P}_{ss'}^a v_\pi(s') \right)$$

Substituting v in q:

$$q_\pi(s, a) = R_s^a + \gamma \sum_{s' \in S} \mathcal{P}_{ss'}^a \sum_{a' \in A} \pi(a'|s') q_\pi(s', a')$$
Example: Bellman update for ν in Student MDP

$$7.4 = 0.5 \times (1 + 0.2 \times -1.3 + 0.4 \times 2.7 + 0.4 \times 7.4) + 0.5 \times 10$$

$\pi(a|s) = 0.5$ from David Silver
Since a policy induces a MRP ν_π can be directly computed (as before)

$$\nu = (I - \gamma P^\pi)^{-1} R^\pi$$
Explicit solution for v_π

Since a policy induces a MRP, v_π can be directly computed (as before)

$$v = (I - \gamma P_\pi)^{-1}R_\pi$$

But do we want v_π?
Since a policy induces a MRP v_π can be directly computed (as before)

$$v = (I - \gamma P^\pi)^{-1} R^\pi$$

But do we want v_π?
We want to find the optimal policy and its value function!
Optimal Value Function

Definition

The *optimal state-value function* $v_*(s)$ is the maximum value function over all policies

$$v_*(s) = \max_{\pi} v_{\pi}(s)$$
Optimal Value Function

Definition

The **optimal state-value function** \(v_*(s) \) is the maximum value function over all policies

\[
v_* (s) = \max_{\pi} v_{\pi} (s)
\]

Definition

The **optimal action-value function** \(q_*(s, a) \) is the maximum action-value function over all policies

\[
q_* (s, a) = \max_{\pi} q_{\pi} (s, a)
\]

What does it mean?
Optimal Value Function

Definition

The \textit{optimal state-value function} \(v_*(s) \) is the maximum value function over all policies

\[v_*(s) = \max_{\pi} v_\pi(s) \]

Definition

The \textit{optimal action-value function} \(q_*(s, a) \) is the maximum action-value function over all policies

\[q_*(s, a) = \max_{\pi} q_\pi(s, a) \]

What does it mean?

- \(v_* \) specifies the best possible performance in an MDP
- Knowing \(v_* \) solves the MDP (how? we will see...)
Example: Optimal Value Function v_* in Student MDP

$v_*(s)$ for $\gamma = 1$

from David Silver
Example: Optimal State Function q_* in Student MDP

$q_*(s,a)$ for $\gamma = 1$

Facebook
- $R = -1$
- $q_* = 5$

Quit
- $R = 0$
- $q_* = 6$

Study
- $R = -2$
- $q_* = 6$

Sleep
- $R = 0$
- $q_* = 0$

Study
- $R = -2$
- $q_* = 8$

Pub
- $R = +1$
- $q_* = -8.4$

from David Silver
Actually solving the MDP means we have also the optimal policy.
Actually solving the MDP means we have also the optimal policy. Define a partial ordering over policies

\[\pi \geq \pi' \text{ if } v_\pi(s) \geq v_{\pi'}(s), \forall s \]

Theorem

For any Markov Decision Process

- There exists an optimal policy \(\pi_* \) that is better than or equal to all other policies, \(\pi_* \geq \pi, \forall \pi \)
- All optimal policies achieve the optimal state-value function, \(v_{\pi_*}(s) = v_*(s) \)
- All optimal policies achieve the optimal action-value function, \(q_{\pi_*}(s, a) = q_*(s, a) \)
Given the optimal action-value function q^*:

$$
\pi^*(a|s) = J_a = \arg \max_{a \in A} q^*(s,a)
$$

J_a is Iverson bracket: 1 if true, otherwise 0.

There is always a deterministic optimal policy for any MDP. If we know $q^*(s,a)$, we immediately have the optimal policy (greedy).
Given the optimal action-value function q^*: the optimal policy is given by maximizing it.

$$
\pi^*(a|s) = \left[a = \arg\max_{a \in A} q^*(s, a) \right]
$$

[] is Iverson bracket: 1 if true, otherwise 0.

- There is always a deterministic optimal policy for any MDP
- If we know $q^*(s, a)$, we immediately have the optimal policy (greedy)
Bellman Equation for optimal value functions

Also for the optimal value functions we can use Bellman's optimality equations:

\[
\begin{align*}
 v_*(s) &= \max_{a \in A} q_*(s, a) \\
 q_*(s, a) &= R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a v_*(s')
\end{align*}
\]
Bellman Equation for optimal value functions

Also for the optimal value functions we can use Bellman's optimality equations:

\[v^*(s) = \max_{a \in A} q^*(s, a) \]

\[q^*(s, a) = R_s + \gamma \sum_{s' \in S} P_{ss'} v^*(s') \]

Substituting \(q \) in \(v \):

\[v^*(s) = \max_{a \in A} \left(R_s + \gamma \sum_{s' \in S} P_{ss'} v^*(s') \right) \]
Bellman Equation for optimal value functions

Also for the optimal value functions we can use Bellmans optimality equations:

\[v_*(s) = \max_{a \in A} q_*(s, a) \]

\[q_*(s, a) = R_s + \gamma \sum_{s' \in S} P_{ss'} v_*(s') \]

Substituting \(q \) in \(v \):

\[v_*(s) = \max_{a \in A} \left(R_s + \gamma \sum_{s' \in S} P_{ss'} v_*(s') \right) \]

Substituting \(v \) in \(q \):

\[q_*(s, a) = R_s + \gamma \sum_{s' \in S} P_{ss'} \max_{a' \in A} q_*(s', a') \]
Bellman Optimality Equation is non-linear
- No closed form solution (in general)
- Many iterative solution methods
 - Value Iteration
 - Policy Iteration
 - Q-learning
 - SARSA
David Silver’s Lecture 3 . . .